Articles

You can find all my papers on arXiv.

[15] Samuel Carolus, Jacob Laubacher, Sydney D. Vitalbo, and Leah K. Widlarz. Replacing bar-like resolutions in a simplicial setting. Submitted, arXiv:2404.06368, 2024.

Publications

[14] Mark W. Bissler, Jacob Laubacher, and Mark L. Lewis. A family of graphs that cannot occur as character degree graphs of solvable groups. Accepted, to appear in Beitr. Algebra Geom., 2025.

[13] Jacob Laubacher, Mark Medwid, and Dylan Schuster. Classifying character degree graphs with seven vertices. Accepted, to appear in Adv. Group Theory Appl., 2024.

[12] Kylie Bennett, Elizabeth Heil, and Jacob Laubacher. Secondary Hochschild cohomology and derivations. Bull. Iranian Math. Soc., 49(4):Paper No. 49, 11 pp., 2023.
MathSciNet

[11] Jacob Laubacher. Secondary Hochschild homology and differentialsMediterr. J. Math., 20(1):Paper No. 52, 11 pp., 2023.
MathSciNet

[10] Sara DeGroot, Jacob Laubacher, and Mark Medwid. On prime character degree graphs occurring within a family of graphs (ii). Comm. Algebra, 50(8):3307–3319, 2022.
MathSciNet

[9] Samuel Carolus and Jacob LaubacherSimplicial structures over the 3-sphere and generalized higher order Hochschild homology. Categ. Gen. Algebr. Struct. Appl., 15(1):93–143, 2021.
MathSciNet

[8] Samuel Carolus, Jacob Laubacher, and Mihai D. Staic. A simplicial construction for noncommutative settings. Homology Homotopy Appl., 23(1):49–60, 2021.
MathSciNet

[7] Jacob Laubacher and Mark Medwid. On prime character degree graphs occurring within a family of graphsComm. Algebra, 49(4):1534–1547, 2021.
MathSciNet

[6] Samuel Carolus, Samuel A. Hokamp, and Jacob LaubacherDeformation theories controlled by Hochschild cohomologies. São Paulo J. Math. Sci., 14(2):481–495, 2020.
MathSciNet

[5] Mark W. Bissler and Jacob LaubacherClassifying families of character degree graphs of solvable groupsInt. J. Group Theory, 8(4):37–46, 2019.
MathSciNet

[4] Mark W. Bissler, Jacob Laubacher, and Mark L. Lewis. Classifying character degree graphs with six vertices. Beitr. Algebra Geom., 60(3):499–511, 2019.
MathSciNet

[3] Mark W. Bissler, Jacob Laubacher, and Corey F. Lyons. On the absence of a normal nonabelian Sylow subgroupComm. Algebra, 47(3):917–922, 2019.
MathSciNet

[2] Jacob Laubacher, Mihai D. Staic, and Alin Stancu. Bar simplicial modules and secondary cyclic (co)homology. J. Noncommut. Geom., 12(3):865–887, 2018.
MathSciNet

[1] Jacob LaubacherProperties of the secondary Hochschild homology. Algebra Colloq., 25(2):225–242, 2018.
MathSciNet

[0] Jacob LaubacherSecondary Hochschild and cyclic (co)homologies. OhioLINK Electronic Theses and Dissertations Center, Columbus, Ohio, 2017. Dissertation (Ph.D.)—Bowling Green State University.

css.php